10. Creation and Annihilation Operators

Use tensor products and Fock spaces for describing mathematically the
states of many-particle systems.
Folklore

We want to study a mathematical formalism which describes creation and annihi-
lation operators for many-particle systems. We have to distinguish between

e bosons (particles with integer spin like photons, gluons, vector bosons, and gravi-
tons) and
e fermions (particles with half-integer spin like electrons, neutrinos, and quarks).

The point is that the possible number of identical bosons being in the same physical
state is unlimited. In contrast to this, the behavior of fermions is governed by the
Pauli exclusion principle. This principle tells us that:

Two identical fermions cannot be in the same physical state.

Furthermore, we have the following general principle of indistinguishability for both
bosons and fermions:

It is impossible to distinguish between n identical particles.

Roughly speaking, in contrast to planets, elementary particles do not possess any
individuality. Fock spaces were introduced by Vladimir Fock (1898-1974) in 1932.1

10.1 The Bosonic Fock Space

The elements of the bosonic Fock space X are infinite tuples of physical fields.
To display the main idea, we restrict ourselves to the prototype of complex-valued
fields?

¥ R* = C.

1 V. Fock, Configuration space and second quantization, Z. Phys. 75 (1932), 622
647 (in German). See also P. Jordan and E. Wigner, On the Pauli equivalence
principle, Z. Phys. 47 (1928), 631-658 (in German).

2 Important generalizations will be studied later on in connection with quantum
electrodynamics. This refers to fields

P R* > C™

with m components. For describing photons, it will be necessary to pass from
Hilbert spaces to indefinite inner product spaces.
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The point z = (2%, 2, 22, 23) describes space and time in an inertial system, that
is, the position coordinates ', 2, 2% are right-handed Cartesian coordinates. More-
over, we introduce the time-like coordinate

= ct
where t is time, and c is the velocity of light in a vacuum. The position vector
x = x'i + 22j + 2%k refers to the right-handed orthonormal system i, j, k.
The Hilbert space LQ(R4"). Choose n = 1,2, ... Let us introduce the inner
product

(Ylp)n = / (x,. .. ,xn)Tgo(xl, ceeyTn) d*zy - d*z,
R4

along with the corresponding norm ||¢||n := v/(¥|1)n. Hence
4112 :/4 (@1, .y dy - A,
R n

Here, the arguments z1, . . ., 2, live in R*. By definition, the space L2(R*™) consists
of all the functions®

Y:R™ - C
with [|3]|n < oco. The space La(R*") becomes a complex Hilbert space equipped
with the inner product (¢|¢)». We have the direct sum decomposition

L2 (R4n) = L2,sym (R4n) @ L2,antisym (R4n)

where the space Lg,sym(RM) (resp. L2, antisym (R4")) contains all the functions

¢:¢($1:-~71’n)7 x17~~-7$n6R4

from L»(R*") which are symmetric (resp. antisymmetric) with respect to the argu-
ments T1,...,Tn.

Tensor products of fields. Suppose that the two functions ¢, : R* — C
live in the Hilbert space L2(R*). Set

(Y ® ) (z1, 22) := P(z1)P(x2) for all z1,z2 € R™.

Then, the tensor product ¥ ® ¢ lives in the Hilbert space L2(R®). Introducing the
symmetrization
sym(y ® ¢) == 3(Y @ 9 + ¢ @ V)

and the antisymmetrization

antisym(y ® ) == (¥ @ — @ 9) = (Y A )
of the tensor product ¥ ® ¢, we get the decomposition

3 We tacitly assume that the functions v are measurable with respect to the
Lebesgue measure on R*". This only excludes highly pathological functions
having extremely wild discontinuities. In addition, observe that two functions
1, : R"™ — C are identified with each other if they only differ on a subset of
R*" which has the 4n-dimensional Lebesgue measure zero.
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P ® @ =sym(y ® p) + antisym (1) ® )

with sym(¢ ® @) € Lo sym(R®) and antisym (1) ® ) € Lo antisym (R®). Moreover, the
set of all the finite linear combinations

a1P1 Q1+ ... + ann @ @n, n=12...

with 91, ¢1,... € L2(R*) and complex numbers ai, az, ... is dense in the Hilbert
space Lo (RS). We write

Ly(R®) = Ly(R*) @ Lo(R*) = Lo (R*)®2.
This is the prototype of the tensor product of two Hilbert spaces. We also write
Lo antisym (R®) = L2(R*) A Lo(R*) = Lo(RY)M.

For the inner product, we have?

[ (91 @ palihn @ ) = (prln) (palws). |

Finally, for two given linear operators A, B : Lo(R*) — L2(R%), we define the tensor
product A ® B by setting

‘(A@B)(Tl)@go) ::A¢®<p+’t/1®B<p‘

for all @, € La(R*).
Definition of the bosonic Fock space. The bosonic Fock space X is defined
to be the direct sum

of the complex Hilbert spaces Xy := C, X := L2 (R*), and
X, := Lo qym(R*™), n=2.3,...
Explicitly, this means the following. The bosonic Fock space X consists of all the
infinite sequences
(Yo,%1,%2,...)

with 3°°° | ||[¥n |7 < co. The function 1y, is called an n-particle function. Here,

e 1) is an arbitrary complex number,

e the one-particle functions 11 : R* — C are of the form 1 = 11 (z) with = € R*,
and they live in the complex Hilbert space L (R*),

e the n-particle functions ¥, : R** — C,

UV = Yn(T1,T2, ..., Tn), n=223,...,

are symmetric with respect to the n arguments 1, z2, ..., z» € R*, and they live
in the complex Hilbert space La,sym(R*™).

4 Explicitly, the integral f(<p1 (wl)gpz(xz))Tt/}l (xl)zpz(wz)d4x1d4a:2 is equal to

/@1($1)T¢1($1)d4$1/@2(362)%2(332)(14%2
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The symmetry of the n-particle functions v, reflects the principle of indistinguisha-
bility for n bosons. The bosonic Fock space X is an infinite-dimensional complex
Hilbert space equipped with the inner product

Wle) == pieo + > _ (bnlpn)n-
n=1

10.1.1 The Particle Number Operator
For 1/) = (17/}0,1/)1,1/)2, ), set
‘N¢ = (07¢172¢27---,mﬁm-~)-‘

More precisely, the linear operator N : D(N) — X is defined for all states ¢ € X
of the bosonic Fock space X with

oo
S 52 [gll2 < oo,
n=1

For example, choose ¥, € X, for fixed index n with ||[¢n||» = 1. Define
@, = (0,...,0,%n,0,0,...)

where 1, stands at the nth place. Then, ¥, is a normalized state in the bosonic
Fock space X with
NV, = n¥,.

In terms of physics, the state ¥, describes n bosons.

10.1.2 The Ground State

The state |0) := (1,0,0,...) is a normalized state in the bosonic Fock space X with

The state |0) is called the normalized vacuum state (or briefly the vacuum), since
the number of bosons is equal to zero in this state.

Dense linear subspace Xg, of the bosonic Fock space X. Let X5, denote
the set of all the states

Y = (Yo, ¥1,...)
in the bosonic Fock space X for which at most a finite number of the functions
1,2, ... does not vanish identically. For example, the state

1/]: (’(/)071/]17"'71/)430707"')

with 109 € C and +; € La(R*) for j = 1,...,4 lies in the subspace Xgn.
Composition of particle functions. We are given the one-particle function
f € L2(R*). For each n-particle function

'l/)n € L2,sym (R4n)7
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the symmetrization of the tensor product f®1,, yields the (n+1)-particle function®

On+1 := \/n—|—1~sym(f®1/1n).| (10.1)

Intuitively, this is the composition of the one-particle state f with the n-particle
state v,. Explicitly,

Ont1(T1,. ., Tng1) = (nnTﬁ)l, Zf(ﬁﬂl)wn(l’% ey Tng)

where we sum over all permutations 7 of the arguments z1,...,Zn41.
Creation operator a'(f). Fix again the one-particle function f € Lo(R*).
We want to construct a linear operator

at(f) : Xon — X
which describes the creation of particles. Explicitly, for each sequence

1/} = (7/’0777/)171[)27 e )

in the linear subspace Xg, of the bosonic Fock space X, we define

a+(f)¢ = (O,p17p27-") (102)
where the functions g1, 2, ... are given by (10.1). In particular,
(1) = fa)de  oa(n,w2) = f(fﬂl)lﬁl(mz)\;rif(m)%(m).

Annihilation operator a™ (f). We want to construct a linear operator
a (f): Xen — X

which is formally adjoint to the creation operator a™t(f), that is,

(@™ (Hele) = {pla™ (fHv) for all  ¢,4 € Xgn.

In other words, we want to get ™ (f) = (a*(f))" on Xga. To this end, for each
sequence ¢ := (o, Y1, P2, . ..) in Xan we define

‘af(f)s@ = (X0, X1, X2; - - -) (10.3)
along with
Xn(T1,.. o xn) i=Vn+ 1/ f@) oz, z1,. .. zn)d
R4
for all indices n =0, 1,2, ... In particular, we have

X0 1= /R4 f(x)ftpl(ﬂc)dzlx, x1(z1) = \/5/11@4 f(x)TW2($a$1)d4x-

® It is convenient to add the normalization factor /n + 1 (see Theorem 10.1(iii)
below).
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For the vacuum state, we get

a” (f)|0) =0 for all f € Lo(R").

Fundamental commutation relations. Fix f,g € L2(R*). Recall that
[A,B]- := AB — BA. In particular, [A, B]- = 0 is equivalent to AB = BA.

Theorem 10.1 For all states ¥, p in the linear subspace Xgn of the bosonic Fock
space X, the following relations hold:
(i) Creation operators: [a™ (f),a™ (g)]— ¥ = 0.
(if) Annihilation operators: [a™ (f),a” (g)]- ¢ = 0.
(iii) Creation and annthilation operators:

[a™ (), a®(9)]- ¥ = (flghr¢- (10.4)
(iv) Duality: (a™ (7)¢l) = (gla* (1))

Proof. To display the main ideas of the proof, we restrict ourselves to some special
cases. Then the proof of the general case proceeds similarly by induction.

Ad (i)—(iii). Choose the functions f,g € L2(R*) with ||f||1 = ||g||1 = 1. Since
at(9)|0) = (0,4,0,...), we have

a’ (f)a*(9)|0) = == (0,0, f(z1)g(x2) + f(22)g(z1),0,...).

By
V2
Using symmetry, a* (f)a* (9)[0) — a* (g)a* (£)[0) = 0.

- Bya (1)0) = a~(9)0) =0, weget o~ (a(9)[0)—a" (g)a” (/)10) = 0. Finaily

o (at @) = ([ 1@ stwaa00....)
and a™(g)a” (f)|0) = 0 that
& (1) (@)0) ~ a* (g)a™ (DI0) = {7lg)110)-

Ad (iv). Choosing the two special states
Pi= (071/)1707---)7 P = (0707@2707"')7

we obtain

at(f)y = (0,0, f(z1)P1(x2) + f(z2)1(21),0,...)

7
and

(e = (0, x/i/R Fon) (e, a2) d'ar,0,...).

Therefore, the inner product (pla™(f)1) is equal to
1
75 [ e o) @) @) + fa)in (@) o'
V2 Jes
Since the function g2 is symmetric,

(ela* ()Y) = V2 / (. 22) F @ )n () dardies.

RS
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Furthermore,

(@™ (Nely) = V2 (/ms FH@1)pa(a1, 22) d4$1>T¢1(m2) d*zo.

Consequently, (a™(f)¢|¥) = (pla™ (f)¥). o
Physical interpretation. Choose one-particle functions fi, ..., fs in the space

L2(R*) such that ||f;||i =1 for j =1,...,s. Set

[0 =a* (f)a* (f2) - a* (£2)]0). (10.5)

This is a state in the bosonic Fock space X. Observe that

a’ (f3)10) = (0, £5,0,...)
and Na™(f;)|0) = a*t(f;)|0). We say that

e the function f; represents a normalized one-particle state of a boson, and
e the operator a™(f;) generates the normalized one-particle state a™(f;)|0) from
the vacuum |0).

Note that the state ¥ from (10.5) has the form (to,v1,...) where 1b; = 0 if j # s.

Hence

This tells us that if ¢» # 0, then the state 1) from (10.5) represents s bosons being
in one-particle states corresponding to fi,..., fs. Because of Theorem 10.1, the
state ¢ from (10.5) is invariant under permutations of fi,..., fs. This reflects the
principle of indistinguishability for s bosons.

Important special case. Consider a system of functions

f17f27f37'-~

from R* to C which forms an orthonormal system in the Hilbert space L2(R*), that
is, (fx|fi)1 = 0w for all k,1 =1,2,... Define

af ==a*(f;), aj =a (f;), =12

For all ¢ € Xg, with j,k = 1,2,..., we then have the following commutation
relations:

[af,ai]_ ¥ =aj,a;]_ w=0,

10.6
a7 at]_ =S oo

This follows immediately from Theorem 10.1. Moreover, for j, k = 1,2,..., the
following states are normalized in the bosonic Fock space X:

(i) aflo);
(i) afaf]0) if j # ki

(iil) 5(ah)?[0).
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Proof. Ad (i). Note that a}|0) = (0, f;,0,...).
Ad (ii). We have a}a;f0) = (0,0,¢2,0,...) with

(1, m2) 1= 2EVIu(@2) F Ji(22) (1),

V2

Since j # k, [o4 fi(2) fu(z)d"z = 0. Hence (p2p2)2 is equal to

| @i aendady= [ @ [ 1nmPdy=1.

Ad (iii). Since j = k, we obtain

(aleae =2 [ @' [ InwPaty =2

This argument finishes the proof. O
More generally, if 1 < j1 < ... < jr and m1,...,m, =1,2,..., then
AN AN
ml! mg! mk!

is a normalized state in the bosonic Fock space X. States of this form are basic

e in the scattering theory for elementary particles,
e in the theory of many-particle systems in solid state physics, and in
e quantum optics (laser beams).

The rigorous language of operator-valued distributions in quantum
field theory. The space of linear operators

A: Xgn — X

is denoted by L(Xgn, X). Set®

AT (f) == a™(f) for all f € D(RY).

Then, AT : D(R*) — L(Xfn, X) is a linear map from the space D(R*) of test
functions to the operator space L(Xgn, X). That is,

At (af + Bg) = aAT (f) + BAT (9)

for all f,g € D(]R4) and all complex numbers « and 3. We call A" a distribution
with values in the operator space L(Xgn, X). Similarly, we define

AT (f) :=a (f) for all f € D(RY).
The map A~ : D(R*) — L(Xgan, X) is antilinear, that is,
A™(af +Bg) = ol AT(f) + BTA(g)
6 Recall that the space D(R*) consists of all the smooth functions f : R* — C

which vanish outside some ball, which depends on f. Such functions are called
test functions. The space D(R*) is also denoted by C§°(R*).
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for all f,g € D(R*) and all complex numbers a and 3. We call A~ an antidistribu-
tion with values in the operator space L(Xgn, X).

The formal language of physicists. Physicists introduce the formal creation
operators a” (z) and the formal annihilation operators a™ (z) along with the formal
commutation relations

[a”(z),a"(y)] _ =6z —y)I (10.7)
and the duality relations

(@ @) =a"(2), (a () =a’(a).

These relations are assumed to be valid for all =,y € R*. Intuitively, the operator
a™(z) describes the creation of a boson at the given space-time point x = (ct, ).
This corresponds to the creation of a boson at the position x at time ¢. Similarly,
the operator a™ (z) describes the annihilation of a boson at the position x at time
t. Furthermore, we formally write

at(f) = /]1&4 f(z)a™ (x)d"z,

and a” (f) := [pa f(z)Ta™ (z)dzx along with

o~ (f)a*(g) = / (@) gw)a (@)a* (y)d'zd'y,
]RS

and so on. Mnemonically, this yields the rigorous approach introduced above. For
example,

(e @) - @a (1) = [ @) o) [o @) )] d'ed'y
— [ f@aste -1 dsaty = ( [ r@aaa) 1.
Furthermore,
a*(Na*(9) —a*(@a’ (N = | [@)g(y)la*(@).a" u)]- d'zd'y =0.

Similarly, a™ (f)a™(g9) —a™ (g)a” (f) = 0. Finally, we formally get

T
@) = ([ 1w @is) = [ e @ate=a o)

10.2 The Fermionic Fock Space and the Pauli Principle

In contrast to the bosonic Fock space, the components ¥z, 3, ... of a state in the
fermionic Fock space are not symmetric, but antisymmetric functions. As we will
see below, this forces the Pauli exclusion principle principle. Let us consider the
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prototype of a fermionic Fock space based on the one-particle function v : R* — C.
The fermionic Fock space Y is defined to be the direct sum

Y:éYn

n=0

of the complex Hilbert spaces Yy := C, Y; := L2(R*), and
Yo i= Lo, antisym(R™),  n=2,3,...
Explicitly, the fermionic Fock space Y consists of all the infinite sequences

(w(%wl: ¢2» . )
with 3°°° | [|[¢n |5 < co. More precisely,

e 1) is an arbitrary complex number,

e the one-particle functions v; : R* — C are of the form 1 = 1 (z) with € R?,
and they live in the complex Hilbert space L2 (R?),

o the n-particle functions ¥, : R** — C,

Un = Yn(T1,22,. .., Tn), n=23,...,
are antisymmetric with respect to the n arguments 1, T2, ..., T, € R and they

live in the complex Hilbert space L2 antisym (R4").

The antisymmetry of the functions v, reflects the principle of indistinguishability
for fermions. The fermionic Fock space Y is an infinite-dimensional complex Hilbert
space equipped with the inner product

(®le) =Yoo+ D (Ynlpn)n:

Recall that (¢|p), = fR4” (e, .. xn) (@, .. xn) doy - - dan.
Particle number operator N. For ¢ := (1o, 91,2, ...), set

‘Nw = (o,wl,sz,...,mz;n,...).‘

More precisely, the linear operator N : D(N) — Y is defined for all states ¢ € YV
of the fermionic Fock space Y with

oo
> nPl[¢nlln < oo
n=1

For example, let ¢, € Y, for fixed index n with |[¢)n||» = 1. Choose
@, = (0,...,0,92,0,0,...)

where 1, stands at the nth place. Then, ¥,, is a normalized state in the fermionic
Fock space Y with
NV, = nW¥,.

In terms of physics, the state ¥,, describes n fermions.
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Vacuum. The state |0) := (1,0,0,...) is a normalized state in the fermionic

Fock space Y with
N|0) = 0.

The state |0) is called the normalized vacuum state (or briefly vacuum), since the
number of fermions is equal to zero in this state.

Dense linear subspace Y5, of the fermionic Fock space Y. Let Ys, denote
the set of all states ) = (¢o,%1,...) in the fermionic Fock space Y for which at
most a finite number of the functions 1,2, ... does not vanish identically.

Composition of particle functions. We are given the one-particle function
f € L2(R*). For each n-particle function

d)n € L2,antisym(R4n)g

the antisymmetrization of the tensor product f ® 1, yields the (n + 1)-particle
function

On+1 = Vn+1-antisym(f ® 1n). (10.8)

Intuitively, this is the composition of the one-particle state f with the n-particle
state v,. Explicitly,

On+1(Z1, .0 Tp1) = (nnT—z;, > sgnme f(@)¢n(Ta, ... Tnta)

where we sum over all permutations 7 of the arguments x1,...,Zn+1, and sgnm
denotes the sign of the permutation 7.

Creation operator b"(f). Fix again the one-particle function f € La(R%).
We want to construct a linear operator

bY(f) : Yan — Y

which describes the creation of particles. Explicitly, for each sequence

1/) = (¢07¢17¢27 < )
in the linear subspace Ya, of the fermionic Fock space Y, we define
b+(f)¢ = (O,p17p27“') (109)
where the functions g1, g2, . . . are given by (10.8). In particular, we have
T z2) — f(x T
o1(z1) = f(z1)vo,  o2(z1,22) = fnnt Q)ﬂf( k)

Annihilation operator b~ (f). We want to construct a linear operator
b (f):Yan — Y

which is formally adjoint to the creation operator b1 (f), that is,

b~ (Nely) = (#lb" (N)¥) for all  ¢,9 € Yin.

In other words, we want to get b= (f) = (b7 (f))" on Yan. To this end, for each
sequence ¢ := (¢o, Y1, P2, ...) in Yg,, we define
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b™ (e == (x0s X1, X2+ -) (10.10)

along with

Xn (X1, .oy Tn) = \/n+1/ f(x)TganH(x,ml, .. .,xn)d4az
R4

for all indices n = 0,1,2, ... In particular, we have

X0 = / J@ @ @) =vE [ @ ()i

For the vacuum state, we get

‘b’(f)\o) =0 for all feL2(R4).‘

Fundamental anticommutation relations. Fix f,g € La(R*). Recall that
[A, B]+ := AB + BA. In particular, [A, B]+ = 0 is equivalent to the anticommuta-
tivity relation AB = —BA.

Theorem 10.2 For all states ¥, ¢ in the linear subspace Yan of the fermionic Fock
space Y, the following relations hold:

(i) Creation operators: [bT(f),b%(g)]+ ¥ = 0.

(ii) Annthilation operators: [b~(f),b™ (g)]+ ¥ = 0.

(iii) Creation and annihilation operators:

b (), 07 (9)]+ ¥ = (flg)v. (10.11)
(iv) Duality: (b~ (f)el) = (elb* (f))-

Proof. Let us start with a special case. Choose functions f,g € L2(R?) with
[l£]11 = |lg|l1 = 1. Since b (g)|0) = (0, g,0, ...), we get

b (f)bt(g)|0) = % (0,0, f(z1)g(z2) — f(22)g(21),0,...).
By antisymmetry, b™ ()b (¢)|0) + b (9)bT(f)|0)

)[0) =
~ From b7 (f)[0) = b7(g)[0) = 0 we get b~ (f)b ( )10) + b7 (9)b™ ()I0) = 0
Finally, it follows from

o= ([ serwotono.

and b*(g)b~ (f)|0) = 0 that
b= (BT (9)0) + " (9)b (1)I0) = (f19)10).

The proof of the general case proceeds similarly by induction. O
Physical interpretation. Choose functions fi,..., fs € L2 (]R4) with the nor-

malization condition ||fj||1 =1 for j =1,...,s. Set
G = b (f1)b" (f2) - 6" (f5)[0). (10.12)

This is a state in the fermionic Fock space Y. Observe that

b+(f])|0> = (O7fj707"’)
and NbT(f;)|0) = b*(f;)|0). We say that
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e the function f; represents a normalized one-particle state of one fermion, and
e the operator b'(f;) generates the normalized one-particle state b*(f;)|0) from
the vacuum state |0).

In the general case, we get

Therefore, if ¢ # 0, then the state ¢ from (10.12) represents s fermions which are
in one-particle states corresponding to fi,..., fs.

The Pauli exclusion principle. Because of Theorem 10.2 above, the state ¢
from (10.12) changes sign under odd permutations of fi,..., fs. Thus, we get

b (f1)bT (f2) b (£:)]0) =0

if two one-particle states f; and fi coincide. For example,

br (BT ()I0) = 0.

Important special case. Consider a system of functions fi, fz2, f3,... which
form an orthonormal system in the Hilbert space Lo (R4), that is,
(felfi)r = Omt, kl=1,2,...
Define
by =b"(f), by =b (), i=12
For all ¥ € Ysn and all j,k =1,2,..., we then have the following anticommutation
relations:

[b7.65], v =[b.b], ©=0,

b7, b ], ¥ =y (1043)

If 1 <ji < ... < jg, then the symbol
+o+ +
bj b7, - b5, 10)

J17J2
represents a normalized state in the fermionic Fock space Y.
The rigorous language of operator-valued distributions. The space of
linear operators B : Ya, — Y is denoted by L(Yan,Y). Set

BT (f) :==b"(f) for all f € D(RY).

Then, BT : D(R*) — L(Xgn, X) is a linear map from the space D(R?) of test
functions to the operator space L(Ysn,Y). We call BT a distribution with values
in the operator space L(Ysn, Y). Similarly, we define

B~ (f):==b"(f) for all f € D(RY).

The map B~ : D(R*) — L(Yan,Y) is antilinear. We call B~ an antidistribution
with values in the operator space L(Ysn,Y).

The formal language of physicists. Physicists introduce the formal fermionic
creation operators b1 (z) and the formal fermionic annihilation operators b~ (z)
along with the formal commutation relations
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[ (@).6" )], = [b"@).0" )], =0,
[b7(2),b" ()] | = 8z —y)I (10.14)

and the duality relations

O @) =0"@), 0 (@) =" ().

These relations are assumed to be valid for all =,y € R*. Intuitively, the operator
b* () describes the creation of a fermion at the space-time point = (resp. the oper-
ator b~ (x) describes the annihilation of a fermion at z). Furthermore, we formally
write

b= | @ @d's b= | S @)d'

along with
b ) = [ 1@ b (@b )dad'y,

and so on. Mnemonically, this yields the rigorous approach introduced above. For
example,

b= (b (9) + 0T ()b (f) = / F@)'9(y) [b (2), 0" (v)], d'wd'y

RS

= [ 1@t —1-atad'y = ([ f@lgeris) 1

b (b (g) + b (9) / F@) g )b (2),b" ()]s dad'y = 0.

Furthermore,

Similarly, b~ ()b~ (g) + b~ (9)b~ (f) = 0. Finally, we formally get
T

o' = ([, f@ @de) = [t @ds =)

10.3 General Construction

In a straightforward manner, we now want to generalize the construction of bosonic
and fermionic Fock spaces to one—particle functions 1 : R* — C? which possess d
degrees of freedom:

Y(z) = : ,  zeRh

We briefly write ¢(z) = (¢’ (x)). The desired generalization can be easily obtained
by using systematically the language of tensor products.

The one-particle Hilbert space Ls(R*,C%). To begin with, let us introduce
the following inner product:
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(Ylp)1 / i z) d*z.

By definition, the space Lo(R*,C%) consists of all the functions 1 : R* — C% with
(W|)1 < 00.” The space La2(R* C%) becomes a complex Hilbert space equipped
with the inner product (¥|¢)1.

Bosonic two-particle functions. Let 1, ¢ € La(R*, (Cd) be one-particle func-
tions. The prototype of a two-particle function is the tensor product ¢ ® . Explic-
itly, this is the tuple

(¥ ® @) (z1,22) 1= (V' (21)¢” (€2))i5=1,....45 z1,x2 € R
Naturally enough, the inner product is defined by

d

(Y ® ot @ pu)2 = / > W (@, 20) W (w1, w2) d'zad o

8
RS =1

where W (1, 22) = ' (1)’ (z2), and U (z1, x2) := i (x1)) (x2), and
In order to get a bosonic two-particle function, we have to symmetrize. This
means that we have to pass from ¢ ® ¢ to

sym(y @ @) == 5 (Y @ o+ @ 1p).

In general, by a bosonic two-particle function we understand a tuple
U(z1,22) = (P (21,22))ij=1,...d, 21,22 € RY,

which is symmetric with respect to both the indices ¢, j and the arguments x1, x2.
Explicitly, we obtain

Wij(xl,xQ):Wji(xQer)v iyj:17"'7d7 1"17I2€R4'
In addition, we assume that all the components ¥ live in the space L2(R®). We
briefly write
2
W € Lasym(R®,CH).

In particular, for the bosonic two-particle functions ¥, ® € Lg,sym(RS,(C‘ﬁ), the
inner product is given by

<’I’|@ 2 :—/ Z Lp” a:1 l‘g)T¢J(1‘1,ZE2) d :L'1d 2.
RS

1,j=1

Fermionic two-particle functions. We now replace symmetry by antisymme-
try. For given one-particle functions ), ¢ € Lo(R*, C?), antisymmetrization yields
the special fermionic two-particle function

antisym(¥ @ ) = 2 (¥ ® o —p @) = (Y A ).

7 We tacitly assume that the components of the functions v are measurable with
respect to the Lebesgue measure on R%. In addition, observe that two functions
¥, : R* — C? are identified with each other if they only differ on a subset of
R* which has the 4-dimensional Lebesgue measure zero.
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Generally, by a fermionic two-particle function we understand a tuple
U(x1,m2) = (P (21,22)),  4,j=1,...,d, a1,22 €R"

which is antisymmetric with respect to both the indices ¢,5 and the arguments
1, 2. Explicitly,

!Z/ij(a:hxg) = —Spji(xg,:rl), i,j=1,..,d, z,z2 € R

In addition, we assume that all the components ¥* live in the space LQ(RS). We
briefly write ¥ € L2 antisym (RS, Cdz). Next we want to introduce

e the bosonic Fock space, and
e the fermionic Fock space.

The bosonic Fock space. The direct sum

of the Hilbert spaces Xo := C, X; := La2(R*,C), and
X, = Lo eym(R*™, C%), n=2.3,...

is called the bosonic Fock space to the one-particle Hilbert space L2(R4,Cd). Let
i1,...,in =1,...,d and z1,...,z, € R*. By definition, the elements of the space
X, are tuples o

U(x1,...,on) = (T (21, .., T0))

which are symmetric with respect to both the indices i1,...,i, = 1,...,n and the
n space-time variables x1,...,z,. Moreover, all of the components ¥**** live in
the space L2(R*"). The elements of the bosonic Fock space X are infinite tuples

U= (W, ¥,...)

where ¥, is a complex number, and ¥, € X, for n = 1,2,... In addition, we
postulate that Y > | (¥, |¥n)s < 0o where we define

d
(| B ) ::/ Z (Jlil...in)f@il...in &z dia,.
R4n

i1,eeyin=1

The bosonic Fock space X becomes a complex Hilbert space equipped with the
inner product

(@) = Wb+ S Wl

n=1
The linear subspace Xg, and the vacuum state |0) := (1,0,0,...) are defined as in
Sect. 10.1. For each given one-particle function f € X, the creation operator

a+(f) : Xan — X
is defined by a*t (f)¥ := (0, p1, p2, . . .) where

Prnt1:i=Vn+1-sym(f @W,), n=20,1,2,...
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n.+1(

Explicitly, Qn+1 Z1,...Tn+1) s equal to

\/n + gy
Z z ‘ +1(.’]}2,...,.’E»,H_l))
where we sum over all permutations 7 of 1,...,n 4+ 1. The operation 7(...) refers
to permutations of both the indices i1,...,i,+1 and the arguments x1,...,Tnt1.

The annihilation operator
a (f) : Xﬁn — X

is the formally adjoint operator to the creation operator a™ (f), that is,

(a™ (f)P|®) = (®la™ (f)®) for all &, € Xgn.

In other words, a™(f) = (a™(f))" on Xg,. Explicitly, for each given sequence
@ .= (Po, P1, P2, . ..) in Xgn, we define

a_(f)l/J = (X07X17X2a .. )

where xi i (21,...,2,) is given by
d .
vn+1 /4 Zfl( T@Z}rl "(z,x1,. .., x)d
R% =1

In particular, xo = [54 S fix) () dia.

The fermionic Fock space. The direct sum
oo
=P
n=0

of the Hilbert spaces Yy := C, Y3 := Lo(R*,C), and

Yy i= L2 antisym (R, C%"), n=23,..

is called the fermionic Fock space to the one-particle Hilbert space L2 (]R4, (Cd). Let
i1,...,in =1,...,d and z1,...,z, € R*. By definition, the elements of the space
Y, are tuples o

U(z1,...,xn) = (P (21,...,20))

which are antisymmetric with respect to both the indices i1,...,%, and the n
space-time variables z1, ..., z,. Moreover, the components ¥t--in hve in the space
Lo (R*™). Explicitly, the elements of the fermionic Fock space Y are infinite tuples

U= (T, 0, ...)

where ¥y is a complex number, and ¥, € Y,, for n = 1,2,... In addition, we
postulate that Y >° | (¥n|Pn)n < co. The space Y becomes a complex Hilbert space
equipped with the inner product

(WD) = widy + i@n@n)n

n=1
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For each given one-particle function f € Y7, the creation operator
bY(f) : Yan — Y
is defined by b™ (f)¥ := (0, p1, p2, . ..) where

‘pnﬂ :=+vn+1-antisym(f ® ¥,), n:O,l,Q,...‘

Explicitly, Qn_H’ tnt1 (x1,...,Znt1) is equal to

ngnﬂ' ( i ()02 ”+1(m2,...,a:n+1))
where we sum over all permutations 7 of 1,...,n 4+ 1. The operation 7(...) refers
to permutations of both the indices ¢1,...,in+1 and the arguments zi,...,Tpt1.

The annihilation operator
b (f): Yan — Y

is the formally adjoint operator to the creation operator b™ (f), that is,

(b~ (f)Dw) = (Db (f)®) for all &, ¥ € Yan.

In other words, b~ (f) = (b7(f))" on Ya,. Explicitly, for each sequence
b= (@0,@1,@2, .. )
in the space Ysn, we define

b_(f)é = (X07X17X27 D )

where x;! " (z1,...,2,) is equal to

d
Vn + 1/ Zfl(m V@it (2,2, w) d
Lt

10.4 The Main Strategy of Quantum Electrodynamics

The most important experiments in elementary particle physics are scattering ex-
periments carried out in huge high-energy particle accelerators. Physicists charac-
terize the outcome of such experiments by cross sections. If J = pv is the current
density of the incoming particle stream with velocity v and particle density g, then

N=o0T-J

is the number of scattered particles observed during the time interval [— 2 , 2] In
the SI system of physical units, J has the physical dimension of particle density
times velocity, 1/ m?s. Therefore, the quantity o has the physical dimension of area,
m?, and ¢ is called the cross section of the scattering process. Observe the following:

e Cross sections follow from transition probabilities.
e Transition probabilities result from transition amplitudes.
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e Transition amplitudes can be computed by using Feynman diagrams and the
corresponding Feynman rules.

Our goal is to motivate the Feynman rules in quantum electrodynamics and to
apply them to the computation of cross sections.

The Feynman rules represent the hard core of quantum field theory.

For quantum electrodynamics, the Feynman rules will be summarized in Sect. 14.3.
Applications to scattering processes can be found in Chap. 15.

Quantum electrodynamics studies the interaction between the following parti-
cles: electrons, positrons, and photons. Here, photons represent quantized electro-
magnetic waves. Note that:

e The electron is called the basic particle of quantum electrodynamics.

e The positron is the antiparticle to the electron.

e The massless photon is responsible for the interaction between electrons and
positrons. Therefore, photons are called the interacting particles of quantum
electrodynamics.

In order to understand quantum field theory, one has to start with quantum elec-
trodynamics. Let us discuss the main ideas of quantum electrodynamics. We will
proceed in the following four steps:

(C) Classical field theory: We first consider the classical principle of critical ac-
tion for the Maxwell-Dirac field which is obtained by coupling the classical
electromagnetic field to the Dirac field for the relativistic electron.

(F) The free quantum field: For the free electromagnetic field and the free Dirac
field of the electron, we find solutions in the form of finite Fourier series. Re-
placing Fourier coefficients by creation and annihilation operators, we get the
corresponding free quantum fields for electrons, positrons, and photons (the
method of Fourier quantization).

These free quantum fields depend on the choice of both a finite box in
position space and a finite lattice in momentum space.

(I) The interacting quantum field: We use the interaction term between the elec-
trodynamic field and the Dirac field for the electron in order to formulate the
Dyson series for the S-matrix of quantum electrodynamics. The S-matrix is
a formal power series expansion with respect to the dimensionless coupling
constant in the SI system of physical units:

ira. (10.15)

Here, @ denotes the so-called fine structure constant in quantum electrody-
namics:

= 0.007297 (10.16)

e |
T 137.04

which is dimensionless. In addition, —e is the negative electric charge of the
electron.® In the SI system, we have

62

@= 4dmeohe’

8 If we want to emphasize that x and « refer to quantum electrodynamics, but
not to strong and weak interaction in the Standard Model, then we write KqQeDp
and aqep, respectively.
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The point is that the Dyson series for the S-matrix depends nonlinearly on
the free quantum fields for electrons, positrons, and photons. Using the ap-
proximation of the S-matrix in lowest nontrivial order, we are able to compute
approximately scattering processes for electrons, positrons, and photons.

(R) Renormalization: Using higher-order approximations of the S-matrix together
with the high-energy limit (resp. the low-energy limit), we get divergent ex-
pressions for scattering processes. In order to extract physical information from
those divergent expressions, we have to use the crucial method of renormaliza-
tion. The final results are cross sections for scattering processes of the form

2
‘0:01114—02/4 +‘

This is a power series expansion with respect to the small dimensionless cou-
pling constant x given by (10.15). The coefficients o1, 02, ... are real numbers
(equipped with the physical dimension of area) coming from divergent inte-
grals by using a regularization procedure. The coincidence between theory and
physical experiment is extremely precise in quantum electrodynamics.

The smallness of the dimensionless (electromagnetic) fine structure

constant o is responsible for the incredible success of perturbation the-

ory in quantum electrodynamics.
The situation changes completely in strong interaction where the coupling con-
stant is approximately equal to one, kK = 1. Then the results of perturbation
theory are only crude approximations of reality.
In string theory, there exists a duality transformation between certain models
which allows us to transform some models having large coupling constant into
dual models having small coupling constant. In the future, physicists hope to
establish such a beautiful duality method for strong interaction in nature.

Convention for the choice of the system of physical units. To simplify
notation, in the following chapters we will use the energetic system of units, that
is, we set

lh=c=co=po=k:=1] (10.17)

Then, the dimension of an arbitrary physical quantity is some power of energy (see
the Appendix A.2 of Vol. I). In particular, the electric charge —e of the electron is
dimensionless, and we have

e = Vira.
The gauge condition. It is a typical feature of quantum electrodynamics that we

do not start with the electromagnetic field E, B, but with the four-potential U, A.
The electromagnetic field is then given by

E=—gradU — A, B = curl A.

The point is that the four-potential is only determined up to a gauge transformation
of the form
of

U+—>Uf§, A— A+gradf
where f is a smooth function. This causes some trouble. We will overcome the
difficulties in the following sections by using the following trick:

(i) We first destroy the gauge invariance by passing to a modified Lagrangian.
(ii) The corresponding free quantum fields include virtual photons which do not
possess an obvious physical meaning.
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(iii) In classical theory, virtual photons are eliminated by adding the Lorenz gauge
condition.

(iv) In quantum field theory, virtual photons are eliminated by adding a weak
Lorenz gauge condition (Gupta—Bleuler quantization).

Nevertheless, we will see that virtual photons essentially influence physical processes
proceeding in our real world. The point is that there arise terms in perturbation the-
ory which depend on the photon propagator, and this photon propagator contains
contributions coming from virtual photons. In general, quantum electrodynamics
adds new physical effects to classical electrodynamics which can be summarized
under the sketch word quantum fluctuations of the ground state (also called the
vacuum). In particular, this concerns the so-called vacuum polarization.
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